
CRM Mktg.

Servers Employees

LB

FW 80, 334, 7000

7000
P1:

P2:

if_(match(srcip=Mktg, tcp, dstport=7000, dstip=CRM),

 FW>>LB>>route,

 if_(match(dstip=CRM), drop,

 if_(match(srcip=Empl, tcp, dstport=80|334|7000, dstip=Servers),

 FW>>route, drop)))

CRM exclusively serves
only Mktg. employees

(a) Independently specified policies.
(b) Pyretic-style composite program.

(c) composite policy specified in GBP.

Subject1: CRM-Access
 tcp, dstport =7000 : Permit, FW-LB chain
Subject2: CRM-Block
 * : Deny
Subject3: Server-Access
 tcp, dstport=80|334|7000 : Permit, FW chain

Clauses (Prioritized):
1. Mktg --> CRM : CRM-Access
2. * --> CRM : CRM-Block
3. Employees --> Server : Server-Access

CRM Mktg

Servers

CRM

Empl

Mktg

LB

FW
80, 334, 7000

7000
FW

FW
80, 334, 7000

(d) Composed policy in a graph.

Figure 1: Policy composition example.

ing so must be exposed to and take into account the network
admin’s intent.

Other frameworks such as Frenetic [20] and Pyretic [34]
allow users to compose modular policies/programs into a
more complex control program. For example, Pyretic users
can cause two policies to be sequentially applied to an in-
coming packet using the >> operator, and this is effective
to chain multiple service functions (such as FW>>LB). The
sequential operator cannot be used to directly compose P1
and P2: e.g., P1>>P2 composition fails to allow [Empl→
Servers−CRM] traffic since the traffic cannot pass P1’s ACL.
Pyretic‘s parallel composition, P1+P2, will apply each pol-
icy to a different copy of the same packet and fail to block
non-Marketing traffic and to create the FW>>LB chain.

From these failed attempts to combine P1 and P2, we see
that a correct composition requires carefully decomposing
each of P1 and P2 into ACL and service requirements and re-
composing them into a single program. In particular, Pyretic
supports an if_(match(), A,B) statement for ‘if match()
do A, else B’. With this, users can write a composite pro-
gram implementing P1 and P2, as shown in Fig.1(b). How-
ever, the user has to carefully consider the flow space rela-
tions (P1 ⊂ P2) and manually compose the FW>>LB chain
for [Mktg→CRM], place P1’s match() classifier followed
by P2, and insert if_(match(dstip = CRM), drop, ...) in
between to implement exclusive access to CRM. A similar
manually composed program for GBP is shown in Fig.1(c).

Such manual decomposition and re-composition process
is possible when done by a human operator who clearly un-
derstands the joint intent of P1 and P2. Based on such un-
derstanding, the operator can 1) resolve, the ACL conflict
between P1 and P2 and 2) decide, the order between FW
and LB. P1 and P2 ACL policies do conflict since P1 blocks
traffic from non-Mktg employees to CRM while P2 allows
the traffic (by allowing its super-set). The joint intent used
to resolve this conflict would be P1’s exclusive access policy
overrides P2’s allow policy. Similarly, the order of the FW-

LB chain is chosen using the operator’s internal knowledge
of the service functions.

Even if such joint intents are clear to the human opera-
tor, it is impractical and error-prone to manually compose
thousands of real world policies that have more complex
super/sub-set relations and access control requirements: e.g.,
exclusive access to source/destination, conditional on other
attributes such as location and security level.

Thus, automated composition by the system, not by a hu-
man, is critical to build a practical and scalable policy frame-
work. The key to enabling automatic composition is to ex-
plicitly capture the internal intents of the individual policy
writer in each policy. Existing policy abstractions [19, 23,
38] do not support this. For instance, they cannot express
the intent that an Allow ACL rule MUST allow its specified
traffic; thus, the Allow rule can be overridden by a Deny rule
from another policy it is combined with. Similarly, exist-
ing service chain policy work [38, 31] can only capture the
intent that certain service functions should be deployed on
the specified path, but they cannot capture the service func-
tions/actions that MUST NOT be applied by other policies.
Hence, a human oracle is required to manually combine ser-
vice function requirements from different policies.

Fig.1(d) shows a correct composition of P1 and P2 in a
simple graph. Only Mktg. employees can send to the CRM
servers through the FW-LB service chain. The other servers
except for CRM, expressed by a primitive set operator diff
(‘−’), accept traffic from all Employee devices including
Mktg. An entire policy for any endpoint pair is expressed
on the edge between two nodes representing the endpoints,
with no need to carefully walk through multiple lines of pri-
oritized rules or if_then statements. We show how to auto-
matically create such composed policies in §4 and §5. We
first lay out the required properties for a policy framework.

2.3 Requirements for policy framework
Simple and intuitive: Anecdotally, we found that many

network admins and cloud tenants design their policies by

