
switch
1

switch 3

switch
2

apply(π1)

p1 p2 p3

(a)

sw 1
sw 2
sw 3

p1
p2
p3

[]
[]

[]

apply(π1)
apply(π2)

apply(π3) nack

ack
ack

Time

[]
[]

apply(π1)

apply(π2) ack

ack

Time

=~

(b)

Figure 1: Example of a policy composition: (a) 3-process control plane and 3-switch data plane, (b) a sequen-

tially composable concurrent history H and its sequential equivalent HS .

conflicting with both ⇡
1

and ⇡
2

(e.g., it applies to tra�c coming from src address = 1.2.3.4).
In this history, requests ⇡

1

and ⇡
2

are committed (returned ack), while ⇡
3

is aborted (returned
nack).

While the concurrent policy-update requests are processed, three packets are injected to the
network (at switches sw1, sw2, and sw3) leaving three traces depicted with dotted and dashed
arrows. Each trace is in fact the sequence of ports which the packet goes through while it
traverses the network. For example, in one of the traces (depicted with the dotted arrow), a
packet arrives at sw1, then it is forwarded to sw2, and then to sw1.

Next to H we present its “sequential equivalent” HS . In the sequential history, no two
requests are applied concurrently and no request is rejected. Also, the traces of H are reshu✏ed
in HS in such a way that no packet is in flight while an update is being installed. Note that
each trace in H is exactly the same as in HS : no packet can distinguish H from HS , i.e., the
tra�c on the data plane is processed as though the application of policy updates is atomic and
packets cross the network instantaneously. Here the first packet is processed according to the
initial policy ⇡

0

, the second–by the composition of ⇡
0

and ⇡
1

, and the third by the composition
of ⇡

0

, ⇡
1

, and ⇡
2

. Note that the aborted request ⇡
3

does not a↵ect any packet in the network.
As we formally define later, the existence of HS establishes that H is sequentially composable.

In the following two sections, we introduce our system model and formally define the notion
of sequentially composable histories and the problem of consistent policy composition.

3 Modeling Software Defined Networks

Control plane. We consider a system of n � 2 processes (or controllers), p
1

, . . . , pn, that
communicate via (asynchronous but reliable) message-passing. These processes constitute the
distributed control plane of the SDN network. We assume that the processes are subject to
crash failures: a faulty process stops taking steps of its algorithm. The process that never
crashes is called correct and we assume that there is at least one correct process.

Data plane. Following [12], we model the physical network (or data plane) as a set P of ports
and a set L ✓ P ⇥P of links. A link (i, j) 2 L is called outgoing for port i and incoming for port
j. A port that has no outgoing links is called ingress, otherwise the port is called internal. Let
L(i), i 2 P , denote the set of neighbors of i, i.e., {j 2 P |(i, j) 2 L}. We additionally consider
two distinct ports, World and Drop used to represent forwarding a packet to the outside of the
network and dropping the packet, respectively.

We model the workload on the data plane as a set ⇧ of packets. In order to distinguish
between control plane and data plane communication, we will use the term message for a com-
munication involving at least one process, and the term packet for data plane communication.
In general, we will use the term packet canonically as a type [12], e.g., describing all packets
(the packet instances or copies) matching a certain header; when clear from the context, we do
not explicitly distinguish between packet types and packet instances in the text. For instance, a
policy usually refers to packet types whereas per-packet consistency refers to packet instances.

Ports are attached to switches, and the state of the network is characterized by a port queue

3

iPad 3 the new iPad

ipad mini

ipad mini

ipad mini

ipad mini

ipad mini

ipad mini

