
2.4 Proof Terms 23

In summary, we have

Terms M ::= u Hypotheses
| hM1,M2i | fst M | sndM Conjunction
| �u:A. M | M1 M2 Implication
| inlA M | inrA M Disjunction
| (case M of inl u1) M1 | inr u2) M2)
| µpu:A. M | M1 ·

A

M2 Negation
| h i Truth
| abortA M Falsehood

and the reduction rules

fst hM,Ni �!
R

M
snd hM,Ni �!

R

N
(�u:A. M) N �!

R

[N/u]M
case inlB M of inl u) N1 | inr w) N2 �!

R

[M/u]N1

case inrA M of inl u) N1 | inr w) N2 �!
R

[M/w]N2

(µpu:A. M) ·
C

N �!
R

[N/u][C/p]M
no rule for truth

no rule for falsehood

The expansion rules are given below.

M : A ^B �!
E

hfstM, sndMi
M : A�B �!

E

�u:A. M u

M : A _B �!
E

case M of inl u) inlB u | inr w) inrA w
M : ¬A �!

E

µpu:A. M ·
p

u
M : > �!

E

h i
M : ? �!

E

abort?M

We can now see that the formulas act as types for proof terms. Shifting to
the usual presentation of the typed �-calculus we use ⌧ and � as symbols for
types, and ⌧ ⇥� for the product type, ⌧ ! � for the function type, ⌧ +� for the
disjoint sum type, 1 for the unit type and 0 for the empty or void type. Base
types b remain unspecified, just as the basic propositions of the propositional
calculus remain unspecified. Types and propositions then correspond to each
other as indicated below.

Types ⌧ ::= b | ⌧1 ⇥ ⌧2 | ⌧1 ! ⌧2 | ⌧1 + ⌧2 | 1 | 0
Propositions A ::= p | A1 ^A2 | A1 �A2 | A1 _A2 | > | ?

We omit here the negation type which is typically not used in functional
programming and thus does not have a well-known counterpart. We can think
of ¬A as corresponding to ⌧ ! 0, where ⌧ corresponds to A. We now summarize
and restate the rules above, using the notation of types instead of propositions
(omitting only the case for negation). Note that contexts � now declare variables
with their types, rather than hypothesis labels with their proposition.

Draft of April 13, 2004

