
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

Switch could also perform address translation by replacing
packet headers. This could be used to obfuscate addresses in
the network by “swapping” addresses at each Switch along the
path—an eavesdropper would not be able to tell which end-
hosts are communicating—or to implement address translation
for NAT in order to conserve addresses. Finally, a Switch could
control the rate of a flow.

Local Switch Manager. The Switch needs a small local
manager to establish and maintain the secure channel to
the Controller, to monitor link status, and to provide an
interface for any additional Switch-specific management and
diagnostics. (We implemented our manager in the Switch’s
software layer.)

There are two ways a Switch can talk to the Controller.
The first one, which we have assumed so far, is that Switches
are part of the same physical network as the Controller. We
expect this to be the most common case; e.g., in an enterprise
network on a single campus. In this case, the Switch finds
the Controller using our modified Minimum Spanning Tree
protocol described in §III-G. The process results in a secure
channel stretching through these intermediate Switches all the
way to the Controller.

If the Switch is not within the same broadcast domain as
the Controller, the Switch can create an IP tunnel to it (after
being manually configured with its IP address). This approach
can be used to control Switches in arbitrary locations, e.g., the
other side of a conventional router or in a remote location. In
one application of Ethane, the Switch (most likely a wireless
access point) is placed in a home or small business and then
managed remotely by the Controller over this secure tunnel.

The local Switch manager relays link status to the Controller
so it can reconstruct the topology for route computation.
Switches maintain a list of neighboring switches by broad-
casting and receiving neighbor-discovery messages. Neighbor
lists are sent to the Controller after authentication, on any
detectable change in link status, and periodically every 15
seconds.

C. Controller

The Controller is the brain of the network and has many
tasks; Figure 3 gives a block-diagram. The components do
not have to be co-located on the same machine (indeed, they
are not in our implementation).

Briefly, the components work as follows. The authentication
component is passed all traffic from unauthenticated or un-
bound MAC addresses. It authenticates users and hosts using
credentials stored in the registration database. Once a host or
user authenticates, the Controller remembers to which switch
port they are connected.

The Controller holds the policy file, which is compiled into
a fast lookup table (see §IV). When a new flow starts, it
is checked against the rules to see if it should be accepted,
denied, or routed through a waypoint. Next, the route compu-
tation uses the network topology to pick the flow’s route. The
topology is maintained by the switch manager, which receives
link updates from the Switches.

Fig. 3. High-level view of Controller components.

In the remainder of this section, we describe each compo-
nent’s function in more detail. We leave description of the
policy language for the next section.

Registration. All entities that are to be named by the
network (i.e., hosts, protocols, Switches, users, and access
points9) must be registered. The set of registered entities make
up the policy namespace and is used to statically check the
policy (§IV) to ensure it is declared over valid principles.

The entities can be registered directly with the Controller,
or—as is more likely in practice and done in our own
implementation—Ethane can interface with a global registry
such as LDAP or AD, which would then be queried by the
Controller.

By forgoing Switch registration, it is also possible for
Ethane to provide the same “plug-and-play” configuration
model for Switches as Ethernet. Under this configuration,
the Switches distribute keys on boot-up (rather than require
manual distribution) under the assumption that the network
has not been compromised.

Authentication. All Switches, hosts, and users must authen-
ticate with the network. Ethane does not specify a particular
host authentication mechanism; a network could support multi-
ple authentication methods (e.g., 802.1X or explicit user login)
and employ entity-specific authentication methods. In our
implementation, for example, hosts authenticate by presenting
registered MAC addresses, while users authenticate through
a web front-end to a Kerberos server. Switches authenticate
using SSL with server- and client-side certificates.

Tracking Bindings. One of Ethane’s most powerful features
is that it can easily track all the bindings between names, ad-
dresses, and physical ports on the network, even as Switches,
hosts, and users join, leave, and move around the network. It
is Ethane’s ability to track these dynamic bindings that makes
the policy language possible: It allows us to describe policies
in terms of users and hosts, yet implement the policy using
flow tables in Switches.

A binding is never made without requiring authentication,
so as to prevent an attacker from assuming the identity of
another host or user. When the Controller detects that a user
or host leaves, all of its bindings are invalidated, and all of
its flows are revoked at the Switch to which it was connected.
Unfortunately, in some cases, we cannot get reliable join and

9We define an access point here as a {Switch, port} pair.

iPad 1

iPad 3 the new iPad 

iPad 3 the new iPad 

iPad 3 the new iPad 


