
Sync

BA

A' B'

Lens

Replica

Synchronized
Replica Updated ViewSource

1

3

2 3

2

1

(a) (b)

Figure 1: (a) Synchronization architecture for heterogeneous replicas. (b) Correspondence between chunks
induced by keys.

2 Lenses

A lens is a bidirectional program. When read from left to right it denotes an ordinary function that maps sources
to views. When read from right to left, the same lens denotes an “update translator” that takes a source together
with an updated view and produces a new source that reflects the update.

In the context of data synchronization, lenses are used to bridge the gap between heterogeneous replicas.
To synchronize two replicas represented in different formats, we first define lenses that transform each source
format into a common “abstract” format, and then synchronize the abstract views. For example, to synchro-
nize iCal and Palm Datebook calendars, we use the forward direction of two lenses to transform the files into
abstract calendars, discarding the low-level formatting details and any other data specific to each replica. After
synchronization, we then propagate the changes induced by the synchronizer back to the original formats using
the reverse direction of the same lenses. The architecture of a synchronizer for heterogeneous data assembled in
this way is depicted in Figure 1(a).

Semantically, a lens l is just a pair of functions, which we call get and put. The get component maps sources
to views. It may, in general, discard some of the information from the source while computing the view. The
put component therefore takes as arguments not only an updated view but also the original source; it weaves the
data from the view together with the information from the source that was discarded by the get component, and
yields an updated source. (Note that lenses are agnostic to how the view update is expressed—the put function
takes the entire state of the updated view as an argument.)

The two components of a lens are required to fit together in a reasonable way: the put function must restore
all of the information discarded by the get when the update to the view is a no-op, and the put function must
propagate all of the information in the view back to the updated source (see [13] for a detailed comparison of
these requirements to classical conditions on view update translators in the literature.) In a lens language, these
requirements are guaranteed by the type system; in implementations, they are checked automatically [13, 14, 3,
2].

2.1 Ordered Data

Recent work on lenses has focused on the special challenges that arise when the source and view are ordered [2].
The main issue is that, since the update to the view can involve a reordering, accurately reflecting updates back
to source requires locating, for each piece of the view, the corresponding piece of the source that contains the
information discarded by get. Our solution is to enrich lenses with a simple mechanism for tracking provenance:
programmers describe how to divide the source into chunks and how to generate a key for each chunk. These
induce an association between pieces of the source and view, and this association is used by put during the
translation of updates—i.e., the put function aligns each piece of the view with a chunk that has the same key.

To illustrate the problem and our solution, let us consider a simple example from the string domain. Suppose

2


