
TANT (see running example introduced in Section
2). If the user requests an insertion of object z into
HIGHLYPAID-PERSON, then z should also be in-
serted into FOREIGN-EXECUTIVE, or into CON-
SULTANT, or both. In previous approaches, this kind
of local ambiguity is typically handled either by de-
fault actions or by issuing an error notification. In
the LAR approach introduced here, insertion propa-
gation for HIGHLYPAIDPERSON is handled by an
LAR that creates three alternative update propaga-
tions. As illustrated below, the presence of other
derivation specifications and constraints might be use-
ful in resolving the ambiguity.

For concreteness, we employ here a specific seman-
tic database model termed Generic Semantic Database
Model (GSDM), which is essentially a subset of SDM
[ll] (Section 3). GSDM supports a variety of kinds
of constraints and derived data. Section 4 presents
the notion of “completion” of a user requested up-
date A,,,,,; these are extensions of A,,,,, that capture
“valid” update propagation from Auaer. (More specif-
ically, they satisfy a number of technical properties, in-
cluding, e.g., that all integrity constraints will be sat-
isfied by the update.) In the spirit of [4,19] we develop
a mechanism for compiling a GSDM schema into a set
of LARS (Section 5) . These, along with the execution
model developed here, can be used to support auto-
matic forward and backward propagation of data up-
dates. Given an incompletely specified user-proposed
update A,,#,,, the execution model attempts to build
all completions of Auaer. Section 5 concludes with a
theoretical development showing that the paradigm is
sound, in the sense that if the execution model ter-
minates successfully, then it will have constructed all
completions of AuIe,, and a brief discussion of com-
plexity issues. Due to space limitations the exposition
is very terse; the reader is referred to the full paper [7]
for a much more comprehensive exposition.

2 Motivating Example and Discussion

In this section we present a simple example that
highlights the key components of the LAR framework,
applied in the context of derived data update. The
intent of this section is to present a high-level per-
spective on the full scope of the LAR paradigm, as
applied t o the problem of derived data update. The
particular example used is admittedly contrived: while
illustrating many important aspects of the approach,
it is devised t o use as small a schema as possible.

Figure l (a) shows the specification for schema
HPP-Schema. This schema has seven classes, inclnd-

ing PERSON and six subclasses of it. EMPLOYEE
and CONSULTANT are user-specified subclasses;
NON-US-CITIZEN, FOREIGN-EXECUTIVE and
US-CONSULTANT are subclasses derived on the ba-
sis of attribute values; and HIGHLY-PAID-PERSON
is derived as the union of FOREIGN-EXECUTIVE
and CONSULTANT. Note that the derivation speci-
fications are included in the definition of classes and
their attributes. Additionally, HPPSchema has two
constraints.

A database state of HPPSchema is shown in Figure
l(b), using the “triplet notation’’ of [2]. The triplet
notation is, conceptually speaking, the internal repre-
sentation used by our system - due to space limitations
we do not include here a more intuitive depiction of
the instance. In this state there are three objects, 012,
013, and 017; these are members of various classes (in-
dicated using ‘has-instance’) and have attribute values
as shown.

Figure l(c) shows part of the derivation graph of
HPP-Schema, denoted DG(HPPSchema). This is not
intended to depict the schema, but rather t o depict a
family of relationships between schema components
stemming from derivation specifications. The nodes
of this graph correspond to the schema components of
HPP-Schema, including both classes and attributes.
An edge from n to ra‘ is included if n’ is a derived com-
ponent, and its derivation specification uses n. In or-
der to be a valid GSDM schema, the derivation graph
must be acyclic, i.e., have no directed cycles (as is
the case here). The notion of upward (forward) and
downward (backward) propagation of updates is for-
mally defined in terms of the derivation graph of a
schema.

Following the spirit of [131, proposed updates are
represented as deltas, i.e., sets of proposed insertions
and deletions. For example, suppose that the user
proposes the update Auaer =

+(HIGHLY-PAIDPERSON,
has-instance, 017),

-(CONSULTANT, has-instance, 013)

Application of this delta yields a database state that
violates integrity constraints and derivation specifica-
tions; for this reason we view Auder as incompletely
specified. Figure 2 shows the Execution DAG con-
structed by the execution model acting on Auaer and
using the rule base associated with HPPSchema. Dif-
ferent nodes of this dag are labeled with deltas that
correspond to different extensions of A,,,,. The chil-
dren of a given node correspond to the application of
a single, possibly ambiguous, rule; e.g., the three chil-

Anduo Wang

