
S (Switches) User(Mbps) Kernel(Mbps)

1 445 2120
10 49.9 940
20 25.7 573
40 12.6 315
60 6.2 267
80 4.15 217
100 2.96 167

Table 1: Mininet end-to-end bandwidth, measured with iperf
through linear chains of user-space (OpenFlow reference) and ker-
nel (Open vSwitch) switches.

graphical applications, two of which are shown in fig-
ures 2 and 3. The hope is that the Mininet API will
prove useful for system-level testing and experimenta-
tion, test network management, instructional materials,
and applications that will surprise the authors.

3.4 Sharing a Network
Mininet is distributed as a VM with all dependen-

cies pre-installed, runnable on common virtual machine
monitors such as VMware, Xen and VirtualBox. The
virtual machine provides a convenient container for dis-
tribution; once a prototype has been developed, the VM
image may be distributed to others to run, examine
and modify. A complete, compressed Mininet VM is
about 800 MB. Mininet can also be installed natively
on Linux distributions that ship with CONFIG NET NS

enabled, such as Ubuntu 10.04, without replacing the
kernel.

3.5 Running on Hardware
To successfully port to hardware on the first try, every

Mininet-emulated component must act in the same way
as its corresponding physical one. The virtual topol-
ogy should match the physical one; virtual Ethernet
pairs must be replaced by link-level Ethernet connec-
tivity. Hosts emulated as processes should be replaced
by hosts with their own OS image. In addition, each em-
ulated OpenFlow switch should be replaced by a phys-
ical one configured to point to the controller. How-
ever, the controller does not need to change. When
Mininet is running, the controller “sees” a physical net-
work of switches, made possible by an interface with
well-defined state semantics. With proxy objects repre-
senting OpenFlow datapaths on physical switches and
SSH servers on physical hosts, the CLI enables interac-
tion with the network in the same way as before, with
unmodified test scripts.

4. SCALABILITY
Lightweight virtualization is the key to scaling to

hundreds of nodes while preserving interactive perfor-
mance. In this section, we measure overall topology
creation times, available bandwidth, and microbench-
marks for individual operations.
Table 2 shows the time required to create a variety

Topology H S Setup(s) Stop(s) Mem(MB)
Minimal 2 1 1.0 0.5 6
Linear(100) 100 100 70.7 70.0 112
VL2(4, 4) 80 10 31.7 14.9 73
FatTree(4) 16 20 17.2 22.3 66
FatTree(6) 54 45 54.3 56.3 102
Mesh(10, 10) 40 100 82.3 92.9 152
Tree(4ˆ4) 256 85 168.4 83.9 233
Tree(16ˆ2) 256 17 139.8 39.3 212
Tree(32ˆ2) 1024 33 817.8 163.6 492

Table 2: Mininet topology benchmarks: setup time, stop time and
memory usage for networks of H hosts and S Open vSwitch kernel
switches, tested in a Debian 5/Linux 2.6.33.1 VM on VMware
Fusion 3.0 on a MacBook Pro (2.4 GHz intel Core 2 Duo/6 GB).
Even in the largest configurations, hosts and switches start up in
less than one second each.

Operation Time (ms)

Create a node (host/switch/controller) 10
Run command on a host (’echo hello’) 0.3
Add link between two nodes 260
Delete link between two nodes 416
Start user space switch (OpenFlow reference) 29
Stop user space switch (OpenFlow reference) 290
Start kernel switch (Open vSwitch) 332
Stop kernel switch (Open vSwitch) 540

Table 3: Time for basic Mininet operations. Mininet’s startup
and shutdown performance is dominated by management of vir-
tual Ethernet interfaces in the Linux (2.6.33.1) kernel and ip
link utility and Open vSwitch startup/shutdown time.

of topologies with Mininet. Larger topologies which
cannot fit in memory with system virtualization can
start up on Mininet. In practice, waiting 10 seconds for
a full fat tree to start is quite reasonable (and faster
than the boot time for hardware switches).
Mininet scales to the large topologies shown (over

1000 hosts) because it virtualizes less and shares more.
The file system, user ID space, process ID space, kernel,
device drivers, shared libraries and other common code
are shared between processes and managed by the op-
erating system. The roughly 1 MB overhead for a host
is the memory cost of a shell process and small net-
work namespace state; this total is almost two orders
of magnitude less than the 70 MB required per host
for the memory image and translation state of a lean
VM. In fact, of the topologies shown in Table 2, only
the smallest one would fit in the memory of a typical
laptop if system virtualization were used. Mininet also
provides a usable amount of bandwidth, as shown in
Table 1: 2-3 Gbps through one switch, or more than 10
Gbps aggregate internal bandwidth through a chain of
100 switches.
Table 3 shows the time consumed by individual op-

erations when building a topology. Surprisingly, link
addition and deletion are expensive operations, taking
roughly 250 ms and 400 ms, respectively. As we gain
a better understanding of Mininet’s resource usage and
interaction with the Linux kernel, we hope to further
improve its performance and contribute optimizations
back to the kernel as well as Open vSwitch.

4


