
Expressiveness: As we will show in Section 3, Datalog
queries can express a variety of well-known routing proto-
cols (e.g., distance vector, path vector, dynamic source rout-
ing, link state, multicast) in a compact and clean fashion,
typically in a handful of lines of program code. Moreover,
higher-level routing concepts (e.g., QoS constraints) can be
achieved via simple modifications to these queries. Finally,
writing the queries in Datalog illustrates surprising relation-
ships between protocols. In particular, we show that distance
vector and dynamic source routing differ only in a simple,
traditional query optimization decision: the order in which a
query’s predicates are evaluated.
Efficiency: By leveraging well-studied query optimization
techniques (in Section 7), we show (in Section 9) via simula-
tion and implementation that there is no inherent overhead
in expressing standard protocols via a declarative query lan-
guage. In addition, query optimization techniques can lead to
efficient execution, and facilitate work-sharing among queries.
Security: As shown in Section 6, Datalog has several desir-
able security properties. In particular, Datalog is a side-effect
free language, and Datalog queries can be easily “sandboxed”.
Furthermore, the complexity of basic Datalog queries is poly-
nomial in the size of the input [5]. While adding functions to
Datalog alters its theoretical worst-case complexity, powerful
tests for termination on given inputs are available [18].

Declarative routing could evolve to be used in a variety of
ways. One extreme view of the future of routing is that indi-
vidual end-users (or their applications) will explicitly request
routes with particular properties, by submitting route con-
struction queries to the network. The safety and simplicity
of declarative queries would clearly be beneficial in that con-
text. A more incremental view is that an administrator at an
ISP might reconfigure the ISP’s routers by issuing a query to
the network; different queries would allow the administrator
to easily implement various routing policies between differ-
ent nodes or different traffic classes. Even in this managed
scenario, the simplicity and safety of declarative routing has
benefits over the current relatively fragile approaches to up-
grading routers. While this second scenario is arguably the
more realistic one, in this paper, we consider the other ex-
treme in which any node (including end-hosts) can issue a
query. We take this extreme position in order to explore the
limits of our design.

To demonstrate the feasibility of our idea, we have imple-
mented a prototype on top of PIER [2], a distributed rela-
tional query processor. Through a combination of simula-
tions on transit-stub network topologies and experiments on
the PlanetLab [21] testbed, we evaluate the scalability and
efficiency of our system, as well as its ability to sustain long-
lived routes under network churn and congestion.

We do not propose that this work in its current form can
serve as a “drop-in” replacement for existing network infras-
tructures, which have evolved and coagulated over many years
under various constraints. However, if progress is to be made
in deploying new, more flexible infrastructures for network
routing, we believe that a cleaner foundation is needed. Our
work can be viewed as a step in that direction, based on ap-
plying well-studied techniques from the deductive database
literature to the network domain.

The remainder of this paper is organized as follows. First,
we provide an overview of our system model in Section 2. In
Section 3, we introduce the basic concepts of query specifica-
tion and execution, by stepping through a concrete example

using the familiar path vector and distance vector protocols.
Next, we will illustrate the flexibility of our query language
through several examples in Section 5. We then address the
challenges of security (Section 6), query optimization tech-
niques for efficiency (Section 7) and route stability and ro-
bustness (Section 8). Following our evaluation (Section 9)
in simulations and on PlanetLab, we conclude with related
(Section 10) and future work (Section 11).

2. SYSTEM MODEL

Query Processor�

Routing Infrastructure Node�

Neighbor�
Table Updates� Query Results�

Routing�
Infrastructure�

Neighbor Table� Forwarding Table�

Base�
Tuples�

Result�
Tuples�

Derived�
Tuples�

Queries�

Figure 1: Basic Components of Routing Infrastructure Node
and Co-located Query Processor.

We model the routing infrastructure as a directed graph,
where each link is associated with a set of parameters (e.g., loss
rate, available bandwidth, delay). The nodes in the routing
infrastructure can either be IP routers or overlay nodes.

In a centralized design such as the Routing Control Plat-
form [15], network information is periodically gathered from
the routing infrastructure, and stored at one or more central
servers. Each query is sent to one or more of these servers,
which process the queries using their internal databases and
set up the forwarding state at the routers in the network.

In this paper, we focus on a fully distributed implemen-
tation to explore the limits of our design. Like traditional
routers, the infrastructure nodes in our model maintain links
to their neighbors, compute routes, and set up the forwarding
state to forward data packets. However, instead of running a
traditional routing protocol, each infrastructure node runs a
general-purpose query processor.

Figure 1 shows the basic components of an infrastructure
node (router) and its co-located query processor. Each router
maintains a typical set of local information including the links
to its neighbors (neighbor table) and the forwarding informa-
tion to route packets (forwarding table). The neighbor table
is periodically updated in response to link failures, new links,
or link metric changes. These updates are performed outside
the query processor using standard mechanisms such as peri-
odic pings. The query processor can read the neighbor table
(either periodically or upon being notified of updates), and
install entries into the forwarding table. In our discussion,
this simple interface is the only interaction required between
the query processor and the router’s core forwarding logic.

Both routing protocols and route requests can be expressed
as declarative queries, and issued either by the routers them-
selves or by third-parties or end-hosts. Upon receiving the
query request, each query processor initiates a distributed ex-


