
Relational Lenses:
A Language for Updatable Views

Aaron Bohannon Benjamin C. Pierce Jeffrey A. Vaughan
University of Pennsylvania

ABSTRACT
We propose a novel approach to the classical view update
problem. The view update problem arises from the fact
that modifications to a database view may not correspond
uniquely to modifications on the underlying database; we
need a means of determining an “update policy” that guides
how view updates are reflected in the database. Our ap-
proach is to define a bi-directional query language, in which
every expression can be read both (from left to right) as a
view definition and (from right to left) as an update pol-
icy. The primitives of this language are based on standard
relational operators. Its type system, which includes record-
level predicates and functional dependencies, plays a crucial
role in guaranteeing that update policies are well-behaved, in
a precise sense, and that they are total—i.e., able to handle
arbitrary changes to the view.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
relational databases

General Terms
Languages, Theory

Keywords
View update, lenses

1. INTRODUCTION
Our interest in the view update problem arose from of our
work on a “universal data synchronizer” called Harmony [3,
4]. Harmony is a generic framework for reconciling discon-
nected updates to heterogeneous, replicated XML data. It
can be used, for instance, to synchronize the bookmark files
of several different web browsers, allowing bookmarks and
bookmark folders to be added, deleted, edited, and reor-
ganized by different users running different browser appli-
cations on disconnected machines. A central theme of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0003 ...$5.00.

Harmony project has been bringing ideas from programming
languages to bear on a set of problems more commonly re-
garded as belonging to databases or distributed systems.

Much of our work on Harmony has focused on developing
the foundations of bi-directional programming languages [4],
in which every program denotes a pair of functions—one
for extracting a view of some complex data structure, and
another for putting back an updated view into the original
structure; we call these programs lenses. Lenses play a cru-
cial role in the way Harmony deals with heterogeneous struc-
tures, mapping between diverse concrete application data
formats and common abstract formats suitable for synchro-
nization, and then translating the updates resulting from
synchronization back to the original concrete data sources.
The lens programming language of Harmony can be viewed
as a solution to a specific instance of the general view update
problem, where the data structures involved are trees.

As we have begun applying it to a broader range of ap-
plications, we have encountered many situations where we
would like to use Harmony to synchronize information in
traditional relational formats. Of course, relational data
can be encoded as trees easily enough. But we have found
that Harmony’s tree-oriented programming language is not
appropriate for the sorts of transformations commonly per-
formed on relational data. In particular, its type system,
which is based on regular tree automata, is good at cap-
turing common XML schemas, but cannot encode familiar
concepts from relational schemas, such as functional depen-
dencies. This, in turn, means that the typing rules for fa-
miliar relational primitives such as joins are overly rigid,
disallowing many useful cases.

Our aim in this paper is to design a new bi-directional
language, based on the abstract framework of lenses but with
a set of primitives and a type system specifically targeted
at relational data. We plan to use this language in a new
version of the Harmony system that will deal natively with
synchronizing relational data, but the language also stands
on its own as a novel approach to the classical view update
problem in relational databases.

The view update problem can be illustrated as follows.
Suppose we have a relation T , which is the result of joining
relations R and S:

ȷ

R A B
a b

S B C
b c

ff

◃▹
−→

ȷ

T A B C
a b c

ff

If we update T—say, by deleting its single row—we may
want to reflect this update in the original relations—i.e.,
to change R and/or S so that R ◃▹ S is the empty table.
Here, the desired effect can be achieved by deleting the single

iPad 3 the new iPad

iPad 3 the new iPad

iPad 3 the new iPad

iPad 3 the new iPad

iPad 3, goodreader 4

iPad 3, goodreader 4

iPad 3, goodreader 4

iPad 3, goodreader 4

iPad 3, goodreader 4

iPad 3, goodreader 4

iPad 3, goodreader 4

