
Participants

Policy Handler

Isolation

Incorporating BGP

Default Forwarding

Composition

Pyretic

Policies

ExaBGP

BGP Updates

BGP decision 
process

BGP 
Announcements

OpenFlow Rules
Access RiBs or ARP table

Optimization
(i.e., compute VNH)

Po
lic

y 
C

om
pi

le
r

Input RIBs

Local RIBs

Route Server

Trigger compilation

ARP

Figure 3: The SDX controller implementation, which has two pipelines: a
policy compiler and a route server.

relationship between the burst size and recompilation time and, as
we explain next, this recompilation can occur in the background.
BGP bursts are separated by large periods with no changes, en-
abling quick, suboptimal reactions followed by background re-
optimization. We observed that the inter-arrival time between BGP
update bursts is at least 10 seconds 75% of the time; half of the
time, the inter-arrival time between bursts is more than one minute.
Such large inter-arrival times enable the SDX runtime to adopt a
two-stage compilation approach, whereby time is traded for space
by combining: (1) a fast, but suboptimal recompilation technique,
that quickly reacts to the updates; and (2) an optimal recompilation
that runs periodically in the background.

The fast stage works as follows. Whenever there is a change in
the BGP best path pertaining to a prefix p, the SDX immediately
creates a new VNH for p and recompiles the policy, considering
only the parts related to p. It then pushes the resulting forwarding
rules into the data plane with a higher priority. The computation
is particularly fast because: (1) it bypasses the actual computation
of the VNH entirely by simply assuming a new VNH is needed;
(2) it restricts compilation to the parts of the policy related to p. In
Section 6, we show that sub-second recompilation is achievable for
the majority of the updates. Although the first stage is fast, it can
also produce more rules than needed, since it essentially bypasses
VNH optimization.

5 Implementation and Deployment
We now describe the implementation of the SDX controller, as well
as our current deployment. We then describe several applications
that we have implemented with the SDX. We describe one applica-
tion with outbound traffic control (application-specific peering) and
one with inbound traffic control (wide-area load balance).

5.1 Implementation
Figure 3 shows the SDX controller implementation, which has two
main pipelines: a policy compiler, which is based on Pyretic; and
a route server, which is based on ExaBGP. The policy compiler
takes as input policies from individual participants that are written
in Pyretic—which may include custom route advertisements from

the participants—as well as BGP routes from the route server, and it
produces forwarding rules that implement the policies. The route
server processes BGP updates from participating ASes and provides
them to the policy compiler and re-advertises BGP routes to partici-
pants based on the computed routes. We briefly describe the steps
of each of these functions below.
SDX policy compiler. The policy compiler is a Pyretic process
that compiles participant policies to forwarding rules. Based on the
virtual SDX abstraction from the SDX configuration (i.e., the static
configuration of which ASes are connected to each other at layer
two), the policy compiler isolates the policies that each AS writes
by augmenting each policy with a match statement based on the
participant’s port. The compiler then restricts each participant’s
outbound policies according to the current BGP routing information
from the route server and rewrites the participant policies so that
the switch can forward traffic according to the default BGP policies.
After augmenting the policies, the compiler then computes VNH
assignments for the advertised prefixes. Finally, the compiler writes
the participant policies where necessary, taking care to avoid unnec-
essary composition of policies that are disjoint and performing other
optimizations such as caching of partial compilations, as described
in Section 4.3. It then passes the policies to the Pyretic compiler,
which generates the corresponding forwarding rules.

Because VNHs are virtual IP addresses, the controller also imple-
ments an ARP responder that responds to ARP queries for VNHs
with the appropriate VMAC addresses.
SDX route server. We implemented the SDX route server by ex-
tending ExaBGP [5], an existing route server that is implemented
in Python. As in other traditional route servers [2, 14], the SDX
route server receives BGP advertisements from all participants and
computes the best path for each destination prefix on behalf of each
participant. The SDX route server also (1) enables integration of
the participant’s policy with interdomain routing by providing ad-
vertised route information to the compiler pipeline; and (2) reduces
data-plane state by advertising virtual next hops for the prefixes
advertised by SDX participants. The SDX route server recompiles
the participants’ policies whenever a BGP update results in changes
to best routes for a prefix. When such an update occurs, the route
server sends an event to the policy handler, which recompiles poli-
cies associated with the affected routing updates. The compiler
installs new rules corresponding to the BGP update while perform-
ing the optimizations described in Section 4.3 in the background.
After compiling the new forwarding rules, the policy compiler then
sends the updated next-hop information to the route server, which
marshals the corresponding BGP updates and sends them to the
appropriate participant ASes.

5.2 Deployment
We have developed a prototype of the SDX [18] and a version that
can be deployed using virtual containers in Mininet [7]. Figure 4
shows two setups that we have created in these environments for the
purposes of demonstrating two applications: application-specific
peering and wide-area load balance. For each use case, we explain
the deployment setup and demonstrate the outcome of the running
application. For both use cases, we have deployed an SDX controller
(including route server) that is connected to an Open vSwitch soft-
ware switch. The ASes that we have connected to the Open vSwitch
at the exchange point are currently virtual (as our deployment has
no peers that carry real Internet traffic), and these virtual ASes in
turn establish BGP connectivity to the Internet via the Transit Por-
tal [19]. The client generates three 1 Mbps UDP flows, varying the

Anduo Wang

Anduo Wang

Anduo Wang


