
Opera&ng)System)Setup)

Link)Interface)Config)

Device Power)

Rou&ng)Control)

Link)Power)

Path/Traffic)Setup)

Link 

Path Dependency 

Device)Configura&on)

Figure 4: Network state dependency model

Checker plays a pivotal role of generating the TS. After reading
the OS, PSes, and TS from the storage service, the checker first ex-
amines whether some PSes are applicable with respect to the latest
OS (e.g., the proposed change may have already been made or can-
not be made at all due to a failure). It then detects conflicts among
PSes with the state dependency model and resolves them with one
of two configurable mechanisms: last-writer-wins or priority-based
locking. After merging the valid and non-conflicting PSes into the
TS, the checker examines the TS for operator-specified invariants.
It writes the TS to the storage service only if the TS complies with
the invariants. It also writes the acceptance or rejection results of
the PSes to the storage service, so applications can learn about the
outcomes and react accordingly.

Monitor periodically collects the current network state from the
switches and links, transforms it into OS variables, and writes the
variables to the storage service. In addition to making it easy for
other components and applications to learn about current network
state, the monitor also shields them from the heterogeneity among
devices. Based on the switch vendor and the supported technolo-
gies, it uses the corresponding protocol (e.g., SNMP or OpenFlow)
to collect the network statistics, and it translates protocol-specific
data to protocol-agnostic state variables. Other components and ap-
plications use these abstract variables without worrying about the
specifics of the underlying infrastructure.

Updater reads the OS and TS and translates their difference into
update commands that are then sent to the network. The updater
is memoryless—it applies the latest difference between the OS and
TS without regard to what happened in the past. Like the monitor,
the updater handles how to update heterogeneous devices with a
command template pool, and allows other components and appli-
cations to work with device- and protocol-agnostic state variables.

4. Managing Network State
We now describe the various aspects of Statesman in more de-

tails, starting with the network-state data model. We use the ex-
amples in Table 2 to illustrate how we build the state dependency
model, and how to use and extend the model.

4.1 The State Dependency Model

Managing a DCN involves multiple levels of control. To perform
the final function of carrying traffic, the DCN needs to be properly
powered and configured. Statesman aims to support operations in
the complete process of bringing up a large DCN from scratch to

Entity Level in Example Permissiondependency state variables

Path Path/traffic setup Switches on path ReadWrite
MPLS or VLAN config ReadWrite

Link

Link interface IP assignment ReadWrite
config Control plane setup ReadWrite

Link power Interface admin status ReadWrite
Interface oper status ReadOnly

N/A Traffic load ReadOnly
(counters) Packet drop rate ReadOnly

Device

Routing control Flow-link routing rules ReadWrite
Link weight allocation ReadWrite

Device Mgmt. interface setup ReadWrite
configuration OpenFlow agent status ReadWrite

Operating system Firmware version ReadWrite
setup Boot image ReadWrite

Power Admin power status ReadWrite
Power unit reachability ReadOnly

N/A CPU utilization ReadOnly
(counters) Memory utilization ReadOnly

Table 2: Example network state variables

normal operations. In order to capture the relationship among the
state variables at different levels of the management process, we
use the state dependency model of Figure 4. We use the process of
bootstrapping a DCN as an example to explain this model.

At the bottom of the dependency model is the power state of
network devices. With the power cable properly plugged in and
electricity properly distributed to the switches, we then need to con-
trol which switch operating system (i.e., firmware) runs. Running
a functioning firmware on a switch is a prerequisite for managing
switch configuration, e.g., use switch vendor’s API to configure the
management interface, boot up compatible OpenFlow agent, etc.

With device configuration states ready, we are able to control the
link interfaces on the switch now. The fundamental state variable
of a link is its being up or down. The configuration of a link in-
terface follows when the link is ready to be up. There are various
link-interface configuration states, such as IP assignment, VLAN
setup, ECMP-group assignment, etc. Consider an example of con-
trol plane setup where a link interface can be configured to use the
OpenFlow protocol or traditional protocols like BGP. For the cho-
sen option, we need to set it up: either an OpenFlow agent needs
to boot and take control of the link, or the BGP session needs to
start with proper policies. These control plane states of the link
determine whether and how the switch’s routing can be controlled.

We can manage the routing states of the switches when all the
dependent states are correct. We represent the routing state in a
data structure of the flow-link pairs, which is agnostic to the sup-
ported routing protocols. For example, the routing states can map to
the routing rules in OpenFlow or the prefix-route announcement or
withdrawal in BGP. When applications change the value of the rout-
ing state variable, Statesman (specifically the updater) automati-
cally translates the value to appropriate control-plane commands.

One level higher is the path state which controls tunnels through
multiple switches. Creating a tunnel and assigning traffic along the
path depend on all switches on the path having their routing states
ready to manage. Again, Statesman is responsible for translating
the path’s states into the routing states of all switches on the path,
and the application only needs to read or write the path states.


